Evolution of cooperation on dynamical graphs
نویسندگان
چکیده
There are two key characteristic of animal and human societies: (1) degree heterogeneity, meaning that not all individual have the same number of associates; and (2) the interaction topology is not static, i.e. either individuals interact with different set of individuals at different times of their life, or at least they have different associations than their parents. Earlier works have shown that population structure is one of the mechanisms promoting cooperation. However, most studies had assumed that the interaction network can be described by a regular graph (homogeneous degree distribution). Recently there are an increasing number of studies employing degree heterogeneous graphs to model interaction topology. But mostly the interaction topology was assumed to be static. Here we investigate the fixation probability of the cooperator strategy in the prisoner's dilemma, when interaction network is a random regular graph, a random graph or a scale-free graph and the interaction network is allowed to change. We show that the fixation probability of the cooperator strategy is lower when the interaction topology is described by a dynamical graph compared to a static graph. Even a limited network dynamics significantly decreases the fixation probability of cooperation, an effect that is mitigated stronger by degree heterogeneous networks topology than by a degree homogeneous one. We have also found that from the considered graph topologies the decrease of fixation probabilities due to graph dynamics is the lowest on scale-free graphs.
منابع مشابه
Pareto Optimal Multi-Objective Dynamical Balancing of a Slider-Crank Mechanism Using Differential Evolution Algorithm
The present paper aims to improve the dynamical balancing of a slider-crank mechanism. This mechanism has been widely used in internal combustion engines, especially vehicle engines; hence, its dynamical balancing is important significantly. To have a full balance mechanism, the shaking forces and shaking moment of foundations should be eliminated completely. However, this elimination is usuall...
متن کاملDynamical evolution of nonclassical properties in cavity quantum electrodynamics with a single trapped ion
In this paper, by considering a system consisting of a single two-level trapped ion interacting with a single-mode quantized radiation field inside a lossless cavity, the temporal evolution of the ionic and the cavity-field quantum statistical properties including photon-counting statistics, quantum fluctuations of the field quadratures and quantum fluctuations of the ionic dipole variables are...
متن کاملScaling relations in dynamical evolution of star clusters
We have carried out a series of small scale collisional N-body calculations of single-mass star clusters to investigate the dependence of the lifetime of star clusters on their initial parameters. Our models move through an external galaxy potential with a logarithmic density profile and they are limited by a cut-off radius. In order to find scaling relations between the lifetime of star cluste...
متن کاملBipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games
By combining evolutionary game theory and graph theory, "games on graphs" study the evolutionary dynamics of frequency-dependent selection in population structures modeled as geographical or social networks. Networks are usually represented by means of unipartite graphs, and social interactions by two-person games such as the famous prisoner's dilemma. Unipartite graphs have also been used for ...
متن کاملEvolutionary Games of Multiplayer Cooperation on Graphs
There has been much interest in studying evolutionary games in structured populations, often modeled as graphs. However, most analytical results so far have only been obtained for two-player or linear games, while the study of more complex multiplayer games has been usually tackled by computer simulations. Here we investigate evolutionary multiplayer games on graphs updated with a Moran death-B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bio Systems
دوره 96 1 شماره
صفحات -
تاریخ انتشار 2009